Problem
Given two integer arrays inorder
and postorder
where inorder
is the inorder traversal of a binary tree and postorder
is the postorder traversal of the same tree, construct and return the binary tree.
Solution
- We can see that the last element of the
postorder
sequence is the root of the tree. - The location of this element in
inorder
sequence seperates left subtree and the right subtree. - For
postorder
sequence, we could determin the elements for left and right subtree from the inorder sequence. The relative location (left/right subtree) of element in sequence in preserved even in postorder traverse. (In post order, we visited the nodes in the order LRV) - Now we could see that the divided sequence is the same subproblem. Therefore, by doing the above recursively, we could rebuild the whole tree.
Implementation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
TreeNode* runner(vector<int>& inorder, vector<int>& postorder,
int in_left, int in_right, int post_left, int post_right) {
if (in_left > in_right || post_left > post_right) return nullptr;
TreeNode* root = new TreeNode(postorder[post_right]);
int mid = in_left;
while (inorder[mid] != postorder[post_right]) mid++;
int post_offset = mid-in_left;
root->left = runner(inorder, postorder, in_left, mid-1, post_left, post_left+post_offset-1);
root->right = runner(inorder, postorder, mid+1, in_right, post_left+post_offset, post_right-1);
return root;
}
TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {
if (inorder.empty()) return nullptr;
int n = inorder.size();
return runner(inorder, postorder, 0, n-1, 0, n-1);
}
};